29.6 集成与部署
## 29.6.1 系统集成
### 整体集成架构
class IntegratedCodingAgent: """集成的编程 Agent"""
def **init**(self, config: AgentConfig): self.config = config
# 初始化核心组件
self.llm_client = LLMClient(config.llm_config) self.tool_manager = ToolManager() self.memory_system = MemorySystem(config.memory_config)
# 初始化能力模块
self.code_generator = CodeGenerator(self.llm_client) self.code_understander = CodeUnderstander(self.llm_client) self.debugger = DebuggingWorkflow(self.llm_client, self.tool_manager)
# 初始化交互管理
self.session_manager = SessionManager() self.context_manager = ContextManager()
# 初始化工具
self._initialize_tools()
# 初始化插件系统
self.plugin_manager = PluginManager()
# 初始化监控
self.monitor = PerformanceMonitor()
def _initialize_tools(self): """初始化工具"""
# 文件操作工具
self.tool_manager.register_tool(FileReadTool()) self.tool_manager.register_tool(FileWriteTool()) self.tool_manager.register_tool(FileSearchTool())
# 代码执行工具
self.tool_manager.register_tool(CodeExecuteTool()) self.tool_manager.register_tool(TestRunnerTool())
# 版本控制工具
self.tool_manager.register_tool(GitTool())
# 搜索工具
self.tool_manager.register_tool(SearchTool())
# 文档工具
self.tool_manager.register_tool(DocumentationTool())async def process_request(self, request: UserRequest) -> AgentResponse: """处理用户请求"""
# 开始监控
self.monitor.start_timer('request_processing')
try:
# 1\. 获取或创建会话
session = self.session_manager.get_or_create_session( request.session_id )
# 2\. 构建上下文
context = await self.context_manager.build_context( request, session )
# 3\. 理解意图
intent = await self._understand_intent(request, context)
# 4\. 根据意图选择处理流程
if intent.type == 'code_generation': response = await self._handle_code_generation( request, context, intent ) elif intent.type == 'code_understanding': response = await self._handle_code_understanding( request, context, intent ) elif intent.type == 'debugging': response = await self._handle_debugging( request, context, intent ) else: response = await self._handle_general_request( request, context, intent )
# 5\. 更新会话
session.add_interaction(request, response)
# 6\. 存储到记忆系统
await self.memory_system.store_interaction(request, response)return response
except Exception as e: logger.error(f"Error processing request: {e}") return AgentResponse( text=f"An error occurred: {str(e)}", success=False, error=str(e) ) finally:
# 停止监控
duration = self.monitor.stop_timer('request_processing') self.monitor.record_metric('request_duration', duration)
async def _understand_intent(self, request: UserRequest, context: Context) -> Intent: """理解用户意图""" prompt = f""" 分析用户请求的意图:
用户请求:{request.text} 上下文:{context}请识别:
- 意图类型(代码生成、代码理解、调试、优化等)
- 具体任务
- 相关的编程语言
- 需要的工具
以 JSON 格式返回。 """
response = await self.llm_client.complete(prompt) return self._parse_intent(response)async def _handle_code_generation(self, request: UserRequest, context: Context, intent: Intent) -> AgentResponse: """处理代码生成请求"""
# 提取需求
requirement = await self.code_generator.extract_requirement( request.text )
# 设计架构
architecture = await self.code_generator.design_architecture( requirement )
# 生成代码
generated_code = await self.code_generator.generate_code( architecture, requirement )
# 验证代码
validation_result = await self.code_generator.validate_code( generated_code, requirement )
# 生成响应
response_text = await self._generate_code_generation_response( requirement, architecture, generated_code, validation_result )
return AgentResponse( text=response_text, success=validation_result.passed, data={ 'requirement': requirement, 'architecture': architecture, 'code': generated_code, 'validation': validation_result } )async def _handle_code_understanding(self, request: UserRequest, context: Context, intent: Intent) -> AgentResponse: """处理代码理解请求"""
# 解析代码
parsed_code = await self.code_understander.parse_code( request.code )
# 分析结构
structure = await self.code_understander.analyze_structure( parsed_code )
# 分析语义
semantic = await self.code_understander.analyze_semantic( parsed_code, structure )
# 生成解释
explanation = await self.code_understander.generate_explanation( parsed_code, structure, semantic )
# 生成响应
response_text = await self._generate_code_understanding_response( parsed_code, structure, semantic, explanation )
return AgentResponse( text=response_text, success=True, data={ 'parsed_code': parsed_code, 'structure': structure, 'semantic': semantic, 'explanation': explanation } )async def _handle_debugging(self, request: UserRequest, context: Context, intent: Intent) -> AgentResponse: """处理调试请求"""
执行调试工作流
debugging_result = await self.debugger.debug( request.code, request.execution_result )
生成响应
response_text = await self._generate_debugging_response( debugging_result )
return AgentResponse( text=response_text, success=True, data={ 'debugging_result': debugging_result } )
async def _handle_general_request(self, request: UserRequest, context: Context, intent: Intent) -> AgentResponse: """处理一般请求"""
使用 LLM 直接处理
prompt = f""" 处理用户请求:
用户请求:{request.text} 上下文:
请提供有帮助的响应。 """
response_text = await self.llm_client.complete(prompt)
return AgentResponse( text=response_text, success=True )
## 29.6.2 API 服务
### REST API 实现
bash
python
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
app = FastAPI(title="Coding Agent API")
# 初始化 Agent
agent = IntegratedCodingAgent(config=load_config())
class CodeGenerationRequest(BaseModel):
prompt: str
language: str = "python"
session_id: str = None
class CodeUnderstandingRequest(BaseModel):
code: str
language: str = "python"
session_id: str = None
class DebuggingRequest(BaseModel):
code: str
error_message: str = None
session_id: str = None
@app.post("/api/v1/generate")
async def generate_code(request: CodeGenerationRequest):
"""生成代码"""
try:
user_request = UserRequest(
text=request.prompt,
session_id=request.session_id or str(uuid.uuid4()),
type='code_generation'
)
response = await agent.process_request(user_request)
return {
'success': response.success,
'response': response.text,
'data': response.data
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/v1/understand")
async def understand_code(request: CodeUnderstandingRequest):
"""理解代码"""
try:
user_request = UserRequest(
text="Explain this code",
code=request.code,
session_id=request.session_id or str(uuid.uuid4()),
type='code_understanding'
)
response = await agent.process_request(user_request)
return {
'success': response.success,
'response': response.text,
'data': response.data
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/v1/debug")
async def debug_code(request: DebuggingRequest):
"""调试代码"""
try:
execution_result = ExecutionResult(
error=request.error_message
) if request.error_message else None
user_request = UserRequest(
text="Debug this code",
code=request.code,
execution_result=execution_result,
session_id=request.session_id or str(uuid.uuid4()),
type='debugging'
)
response = await agent.process_request(user_request)
return {
'success': response.success,
'response': response.text,
'data': response.data
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/v1/health")
async def health_check():
"""健康检查"""
return {
'status': 'healthy',
'timestamp': datetime.utcnow().isoformat()
}
@app.get("/api/v1/stats")
async def get_stats():
"""获取统计信息"""
return {
'performance': agent.monitor.get_stats(),
'sessions': agent.session_manager.get_stats(),
'memory': agent.memory_system.get_stats()
}
## 29.6.3 CLI 工具
### 命令行接口
import click
@click.group()
def cli():
"""Coding Agent CLI"""
pass
@cli.command()
@click.argument('prompt')
@click.option('--language', default='python', help='Programming language')
@click.option('--output', '-o', help='Output file')
def generate(prompt, language, output):
"""Generate code from prompt"""
async def generate_code():
agent = IntegratedCodingAgent(config=load_config())
request = UserRequest(
text=prompt,
type='code_generation'
)
response = await agent.process_request(request)
if response.success and response.data:
code = response.data.get('code', {}).get('full_code', '')
if output:
with open(output, 'w') as f:
f.write(code)
click.echo(f"Code generated and saved to {output}")
else:
click.echo(code)
else:
click.echo(f"Error: {response.text}")
asyncio.run(generate_code())
@cli.command()
@click.argument('file', type=click.Path(exists=True))
def understand(file):
"""Understand code"""
async def understand_code():
agent = IntegratedCodingAgent(config=load_config())
with open(file, 'r') as f:
code = f.read()
request = UserRequest(
text="Explain this code",
code=code,
type='code_understanding'
)
response = await agent.process_request(request)
if response.success:
click.echo(response.text)
else:
click.echo(f"Error: {response.text}")
asyncio.run(understand_code())
@cli.command()
@click.argument('file', type=click.Path(exists=True))
@click.option('--error', help='Error message')
def debug(file, error):
"""Debug code"""
async def debug_code():
agent = IntegratedCodingAgent(config=load_config())
with open(file, 'r') as f:
code = f.read()
execution_result = ExecutionResult(error=error) if error else None
request = UserRequest(
text="Debug this code",
code=code,
execution_result=execution_result,
type='debugging'
)
response = await agent.process_request(request)
if response.success:
click.echo(response.text)
else:
click.echo(f"Error: {response.text}")
asyncio.run(debug_code())
@cli.command()
def interactive():
"""Interactive mode"""
async def interactive_mode():
agent = IntegratedCodingAgent(config=load_config())
session_id = str(uuid.uuid4())
click.echo("Coding Agent Interactive Mode")
click.echo("Type 'exit' to quit")
click.echo()
while True:
user_input = click.prompt("You")
if user_input.lower() == 'exit':
break
request = UserRequest(
text=user_input,
session_id=session_id
)
response = await agent.process_request(request)
click.echo(f"Agent: {response.text}")
click.echo()
asyncio.run(interactive_mode())
if __name__ == '__main__':
cli()
## 29.6.4 部署方案
### Docker 部署
bash
dockerfile
# Dockerfile
FROM python:3.11-slim
WORKDIR /app
# 安装依赖
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# 复制代码
COPY . .
# 暴露端口
EXPOSE 8000
# 启动服务
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]
# docker-compose.yml
version: '3.8'
services:
agent:
build: .
ports:
- "8000:8000"
environment:
- LLM_API_KEY=${LLM_API_KEY}
- LLM_BASE_URL=${LLM_BASE_URL}
volumes:
- ./data:/app/data
restart: unless-stopped
redis:
image: redis:alpine
ports:
- "6379:6379"
restart: unless-stopped
postgres:
image: postgres:15-alpine
environment:
- POSTGRES_DB=coding_agent
- POSTGRES_USER=agent
- POSTGRES_PASSWORD=password
ports:
- "5432:5432"
volumes:
- postgres_data:/var/lib/postgresql/data
restart: unless-stopped
volumes:
postgres_data:
### Kubernetes 部署
bash
yaml
# deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: coding-agent
spec:
replicas: 3
selector:
matchLabels:
app: coding-agent
template:
metadata:
labels:
app: coding-agent
spec:
containers:
- name: agent
image: coding-agent:latest
ports:
- containerPort: 8000
env:
- name: LLM_API_KEY
valueFrom:
secretKeyRef:
name: agent-secrets
key: llm-api-key
- name: LLM_BASE_URL
valueFrom:
configMapKeyRef:
name: agent-config
key: llm-base-url
resources:
requests:
memory: "512Mi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "2000m"
livenessProbe:
httpGet:
path: /api/v1/health
port: 8000
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /api/v1/health
port: 8000
initialDelaySeconds: 5
periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
name: coding-agent-service
spec:
selector:
app: coding-agent
ports:
- protocol: TCP
port: 80
targetPort: 8000
type: LoadBalancer
---
apiVersion: v1
kind: ConfigMap
metadata:
name: agent-config
data:
llm-base-url: "https://api.anthropic.com"
---
apiVersion: v1
kind: Secret
metadata:
name: agent-secrets
type: Opaque
data:
llm-api-key: <base64-encoded-key>
## 29.6.5 监控与日志
### 监控配置
from prometheus_client import Counter, Histogram, Gauge
# 定义指标
request_counter = Counter(
'agent_requests_total',
'Total number of requests',
['type', 'status']
)
request_duration = Histogram(
'agent_request_duration_seconds',
'Request duration',
['type']
)
active_sessions = Gauge(
'agent_active_sessions',
'Number of active sessions'
)
cache_hits = Counter(
'agent_cache_hits_total',
'Total cache hits'
)
cache_misses = Counter(
'agent_cache_misses_total',
'Total cache misses'
)
# 在 Agent 中集成监控
class MonitoredAgent(IntegratedCodingAgent):
"""带监控的 Agent"""
async def process_request(self, request: UserRequest) -> AgentResponse:
# 记录请求开始
request_counter.labels(
type=request.type,
status='processing'
).inc()
with request_duration.labels(type=request.type).time():
try:
response = await super().process_request(request)
# 记录成功
request_counter.labels(
type=request.type,
status='success' if response.success else 'error'
).inc()
return response
except Exception as e:
# 记录错误
request_counter.labels(
type=request.type,
status='error'
).inc()
raise
### 日志配置
bash
python
import logging
from logging.handlers import RotatingFileHandler
def setup_logging():
"""配置日志"""
logger = logging.getLogger('coding_agent')
logger.setLevel(logging.INFO)
# 控制台处理器
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_format = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
console_handler.setFormatter(console_format)
logger.addHandler(console_handler)
# 文件处理器
file_handler = RotatingFileHandler(
'agent.log',
maxBytes=10*1024*1024, # 10MB
backupCount=5
)
file_handler.setLevel(logging.DEBUG)
file_format = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(funcName)s:%(lineno)d - %(message)s'
)
file_handler.setFormatter(file_format)
logger.addHandler(file_handler)
return logger
# 在 Agent 中使用
logger = setup_logging()
class LoggingAgent(IntegratedCodingAgent):
"""带日志的 Agent"""
async def process_request(self, request: UserRequest) -> AgentResponse:
logger.info(f"Processing request: {request.type}")
try:
response = await super().process_request(request)
if response.success:
logger.info(f"Request completed successfully")
else:
logger.warning(f"Request completed with errors: {response.error}")
return response
except Exception as e:
logger.error(f"Request failed: {e}", exc_info=True)
raise
## 29.6.6 最佳实践
### 1\. 安全性- 使用环境变量存储敏感信息
- 实现请求认证和授权
- 限制代码执行权限
- 输入验证和清理
2. 可扩展性
- 使用异步处理提高并发
- 实现缓存机制减少重复计算
- 支持水平扩展
- 使用消息队列处理异步任务
3. 可靠性
- 实现重试机制
- 使用断路器模式
- 健康检查和自动恢复
- 数据持久化和备份
4. 可观测性
- 完善的日志记录
- 性能监控和告警
- 分布式追踪
- 指标收集和分析
通过合理的集成和部署,我们可以将编程 Agent 部署到生产环境,为用户提供稳定、高效的编程辅助服务。