15.4 Skills 效能最佳化
效能最佳化概述
Skills 的效能最佳化是提高 Claude Code 整體效率的關鍵。本節將深入探討 Skills 的各種效能最佳化策略和技巧。
优化策略
1. 缓存优化
1.1 多级缓存
多级缓存架构
缓存层次
- L1 快取(記憶體)
- 最快訪問速度
- 最小容量
- 儲存熱點資料
- L2 快取(本地磁碟)
- 中等訪問速度
- 中等容量
- 儲存溫資料
- L3 快取(遠端儲存)
- 較慢訪問速度
- 最大容量
- 儲存冷資料
快取策略
- LRU(最近最少使用)
- LFU(最不經常使用)
- TTL(生存時間)
- 手動失效
python
#### 1.2 缓存实现
bash
python
class MultiLevelCache:
def __init__(self):
self.l1_cache = LRUCache(maxsize=100)
self.l2_cache = DiskCache(cache_dir="/tmp/skills_cache")
self.l3_cache = RedisCache(host="localhost", port=6379)
async def get(self, key):
# L1 缓存
value = self.l1_cache.get(key)
if value is not None:
return value
# L2 缓存
value = await self.l2_cache.get(key)
if value is not None:
self.l1_cache[key] = value
return value
# L3 缓存
value = await self.l3_cache.get(key)
if value is not None:
self.l1_cache[key] = value
await self.l2_cache.set(key, value)
return value
return None
async def set(self, key, value, ttl=3600):
# 设置所有级别的缓存
self.l1_cache[key] = value
await self.l2_cache.set(key, value, ttl)
await self.l3_cache.set(key, value, ttl)
async def invalidate(self, key):
# 使所有级别的缓存失效
if key in self.l1_cache:
del self.l1_cache[key]
await self.l2_cache.delete(key)
await self.l3_cache.delete(key)
#### 1.3 缓存键设计
class CacheKeyGenerator:
@staticmethod
def generate(skill_name, parameters, context_version):
key_parts = [
skill_name,
hashlib.md5(json.dumps(parameters, sort_keys=True).encode()).hexdigest(),
context_version
]
return ":".join(key_parts)
@staticmethod
def generate_context_key(context):
key_parts = [
"context",
hashlib.md5(json.dumps(context, sort_keys=True).encode()).hexdigest()
]
return ":".join(key_parts)
### 2\. 并行执行
#### 2.1 任务并行
bash
python
class ParallelSkillExecutor:
def __init__(self, max_workers=4):
self.max_workers = max_workers
self.executor = ThreadPoolExecutor(max_workers=max_workers)
async def execute_parallel(self, tasks):
futures = []
for task in tasks:
future = self.executor.submit(task.execute)
futures.append(future)
results = []
for future in as_completed(futures):
result = await asyncio.wrap_future(future)
results.append(result)
return results
async def execute_parallel_with_order(self, tasks):
loop = asyncio.get_event_loop()
futures = [loop.run_in_executor(self.executor, task.execute) for task in tasks]
results = await asyncio.gather(*futures)
return results
#### 2.2 流水线执行
class PipelineExecutor:
def __init__(self, stages):
self.stages = stages
self.queues = [asyncio.Queue() for _ in range(len(stages) + 1)]
async def add_task(self, task):
await self.queues[0].put(task)
async def worker(self, stage_index):
while True:
task = await self.queues[stage_index].get()
result = await self.stages[stage_index].process(task)
await self.queues[stage_index + 1].put(result)
async def run(self):
workers = []
for i in range(len(self.stages)):
worker = asyncio.create_task(self.worker(i))
workers.append(worker)
await asyncio.gather(*workers)
### 3\. 增量处理
#### 3.1 变更检测
bash
python
class ChangeDetector:
def __init__(self):
self.file_hashes = {}
self.context_hashes = {}
def detect_file_changes(self, files):
changes = []
for file in files:
current_hash = self.calculate_file_hash(file)
previous_hash = self.file_hashes.get(file)
if previous_hash is None:
changes.append({"type": "added", "file": file})
elif current_hash != previous_hash:
changes.append({"type": "modified", "file": file})
self.file_hashes[file] = current_hash
return changes
def calculate_file_hash(self, file_path):
with open(file_path, 'rb') as f:
return hashlib.md5(f.read()).hexdigest()
#### 3.2 增量更新
class IncrementalUpdater:
def __init__(self):
self.previous_context = None
self.previous_results = None
async def update(self, new_context, changes):
if self.previous_context is None:
return await self.full_process(new_context)
# 只处理变更的部分
updated_results = copy.deepcopy(self.previous_results)
for change in changes:
if change["type"] == "modified":
result = await self.process_change(change)
updated_results[change["file"]] = result
elif change["type"] == "added":
result = await self.process_change(change)
updated_results[change["file"]] = result
elif change["type"] == "deleted":
del updated_results[change["file"]]
self.previous_context = new_context
self.previous_results = updated_results
return updated_results
### 4\. 资源优化
#### 4.1 内存管理
bash
python
class MemoryManager:
def __init__(self, max_memory_mb=1024):
self.max_memory = max_memory_mb * 1024 * 1024
self.current_memory = 0
self.allocations = {}
def allocate(self, key, size):
if self.current_memory + size > self.max_memory:
self.free_memory(size)
self.allocations[key] = size
self.current_memory += size
def free_memory(self, required_size):
freed = 0
for key in list(self.allocations.keys()):
if freed >= required_size:
break
freed += self.allocations[key]
del self.allocations[key]
self.current_memory -= freed
def get_memory_usage(self):
return self.current_memory / (1024 * 1024)
#### 4.2 连接池
class ConnectionPool:
def __init__(self, max_connections=10):
self.max_connections = max_connections
self.connections = []
self.available = asyncio.Queue()
self.lock = asyncio.Lock()
async def acquire(self):
if not self.available.empty():
return await self.available.get()
async with self.lock:
if len(self.connections) < self.max_connections:
conn = await self.create_connection()
self.connections.append(conn)
return conn
return await self.available.get()
async def release(self, connection):
await self.available.put(connection)
async def create_connection(self):
return await self.connect_to_service()
### 5\. 算法优化
#### 5.1 复杂度分析
bash
markdown
## 常见算法复杂度
### O(1) - 常数时间
- 数组索引访问
- 哈希表查找
- 栈操作
### O(log n) - 对数时间
- 二分查找
- 平衡树操作
- 堆操作
### O(n) - 线性时间
- 数组遍历
- 链表遍历
- 简单排序
### O(n log n) - 线性对数时间
- 快速排序
- 归并排序
- 堆排序
### O(n²) - 平方时间
- 冒泡排序
- 嵌套循环
- 矩阵乘法
#### 5.2 优化示例
class OptimizedCodeAnalyzer:
def __init__(self):
self.symbol_index = {}
self.dependency_graph = {}
def analyze(self, code):
# 使用索引加速查找
symbols = self.extract_symbols(code)
for symbol in symbols:
if symbol not in self.symbol_index:
self.symbol_index[symbol] = []
self.symbol_index[symbol].append(code)
# 使用图表示依赖关系
dependencies = self.extract_dependencies(code)
for dep in dependencies:
if dep not in self.dependency_graph:
self.dependency_graph[dep] = []
self.dependency_graph[dep].append(code)
def find_usages(self, symbol):
# O(1) 查找
return self.symbol_index.get(symbol, [])
def find_dependents(self, code):
# O(1) 查找
return self.dependency_graph.get(code, [])
### 6\. 数据结构优化
#### 6.1 数据结构选择
bash
markdown
## 数据结构选择指南
### 数组
- 适合:随机访问、固定大小
- 不适合:频繁插入/删除
### 链表
- 适合:频繁插入/删除
- 不适合:随机访问
### 哈希表
- 适合:快速查找、键值对
- 不适合:有序遍历
### 树
- 适合:有序数据、层次结构
- 不适合:简单数据
### 图
- 适合:关系数据、网络结构
- 不适合:简单线性数据
#### 6.2 优化实现
class OptimizedContextStore:
def __init__(self):
self.file_index = {} # 文件 -> 内容
self.symbol_index = defaultdict(list) # 符号 -> 文件列表
self.dependency_graph = defaultdict(set) # 文件 -> 依赖文件
self.reverse_dependency_graph = defaultdict(set) # 文件 -> 被依赖文件
def add_file(self, file_path, content):
self.file_index[file_path] = content
symbols = self.extract_symbols(content)
for symbol in symbols:
self.symbol_index[symbol].append(file_path)
dependencies = self.extract_dependencies(content)
for dep in dependencies:
self.dependency_graph[file_path].add(dep)
self.reverse_dependency_graph[dep].add(file_path)
def get_files_by_symbol(self, symbol):
return self.symbol_index.get(symbol, [])
def get_dependents(self, file_path):
return self.reverse_dependency_graph.get(file_path, set())
def get_dependencies(self, file_path):
return self.dependency_graph.get(file_path, set())
## 性能监控
### 1\. 指标收集
#### 1.1 性能指标
bash
python
class PerformanceMonitor:
def __init__(self):
self.metrics = defaultdict(list)
def record_execution_time(self, skill_name, duration):
self.metrics[f"{skill_name}_execution_time"].append({
"value": duration,
"timestamp": datetime.now()
})
def record_memory_usage(self, skill_name, memory_mb):
self.metrics[f"{skill_name}_memory_usage"].append({
"value": memory_mb,
"timestamp": datetime.now()
})
def record_cache_hit_rate(self, cache_name, hit_rate):
self.metrics[f"{cache_name}_hit_rate"].append({
"value": hit_rate,
"timestamp": datetime.now()
})
def get_average(self, metric_name):
values = [m["value"] for m in self.metrics[metric_name]]
return sum(values) / len(values) if values else 0
def get_percentile(self, metric_name, percentile):
values = sorted([m["value"] for m in self.metrics[metric_name]])
if not values:
return 0
index = int(len(values) * percentile / 100)
return values[index]
#### 1.2 实时监控
class RealTimeMonitor:
def __init__(self, interval=1):
self.interval = interval
self.running = False
self.callbacks = []
def add_callback(self, callback):
self.callbacks.append(callback)
async def start(self):
self.running = True
while self.running:
metrics = self.collect_metrics()
for callback in self.callbacks:
await callback(metrics)
await asyncio.sleep(self.interval)
def stop(self):
self.running = False
def collect_metrics(self):
return {
"cpu_usage": psutil.cpu_percent(),
"memory_usage": psutil.virtual_memory().percent,
"disk_io": psutil.disk_io_counters(),
"network_io": psutil.net_io_counters()
}
### 2\. 性能分析
#### 2.1 瓶颈识别
bash
python
class BottleneckAnalyzer:
def __init__(self):
self.execution_times = defaultdict(list)
self.call_counts = defaultdict(int)
def record_call(self, skill_name, duration):
self.execution_times[skill_name].append(duration)
self.call_counts[skill_name] += 1
def analyze(self):
report = {}
for skill_name in self.execution_times:
times = self.execution_times[skill_name]
call_count = self.call_counts[skill_name]
report[skill_name] = {
"total_time": sum(times),
"average_time": sum(times) / len(times),
"max_time": max(times),
"min_time": min(times),
"call_count": call_count,
"time_percentage": self.calculate_percentage(skill_name)
}
return report
def calculate_percentage(self, skill_name):
total_time = sum(sum(times) for times in self.execution_times.values())
skill_time = sum(self.execution_times[skill_name])
return (skill_time / total_time * 100) if total_time > 0 else 0
#### 2.2 性能报告
class PerformanceReporter:
def __init__(self):
self.analyzer = BottleneckAnalyzer()
def generate_report(self):
analysis = self.analyzer.analyze()
report = []
report.append("# Performance Report")
report.append(f"Generated: {datetime.now()}")
report.append("")
report.append("## Execution Summary")
for skill_name, metrics in sorted(
analysis.items(),
key=lambda x: x[1]["total_time"],
reverse=True
):
report.append(f"\n### {skill_name}")
report.append(f"- Total Time: {metrics['total_time']:.2f}s")
report.append(f"- Average Time: {metrics['average_time']:.2f}s")
report.append(f"- Max Time: {metrics['max_time']:.2f}s")
report.append(f"- Call Count: {metrics['call_count']}")
report.append(f"- Time Percentage: {metrics['time_percentage']:.2f}%")
return "\n".join(report)
## 优化实践
### 1\. 代码审查优化
#### 1.1 优化策略
bash
markdown
## 代码审查优化
### 增量审查
- 只审查变更的文件
- 复用之前的审查结果
- 使用文件哈希检测变更
### 并行审查
- 并行审查多个文件
- 使用线程池加速
- 合理分配资源
### 缓存结果
- 缓存审查结果
- 使用多级缓存
- 设置合理的 TTL
### 智能过滤
- 过滤无关文件
- 优先审查重要文件
- 使用规则引擎
#### 1.2 实现示例
class OptimizedCodeReview:
def __init__(self):
self.cache = MultiLevelCache()
self.change_detector = ChangeDetector()
self.executor = ParallelSkillExecutor()
async def review(self, files):
# 检测变更
changes = self.change_detector.detect_file_changes(files)
# 只审查变更的文件
changed_files = [c["file"] for c in changes if c["type"] in ["added", "modified"]]
# 并行审查
tasks = [self.review_file(file) for file in changed_files]
results = await self.executor.execute_parallel(tasks)
return results
async def review_file(self, file_path):
# 检查缓存
cache_key = self.generate_cache_key(file_path)
cached_result = await self.cache.get(cache_key)
if cached_result:
return cached_result
# 执行审查
result = await self.execute_review(file_path)
# 缓存结果
await self.cache.set(cache_key, result)
return result
### 2\. 文档生成优化
#### 2.1 优化策略
bash
markdown
## 文档生成优化
### 增量生成
- 只生成变更的文档
- 复用未变更的部分
- 使用差异算法
### 模板缓存
- 缓存文档模板
- 预编译模板
- 使用高效的模板引擎
### 批量处理
- 批量生成文档
- 减少文件 I/O
- 使用流式写入
### 压缩输出
- 压缩生成的文档
- 使用高效的压缩算法
- 支持流式压缩
#### 2.2 实现示例
class OptimizedDocGenerator:
def __init__(self):
self.template_cache = LRUCache(maxsize=50)
self.diff_calculator = DiffCalculator()
async def generate_docs(self, files, previous_docs=None):
if previous_docs is None:
return await self.full_generate(files)
# 计算差异
diffs = self.diff_calculator.calculate_diffs(files, previous_docs)
# 只生成变更的部分
results = {}
for file_path, diff in diffs.items():
if diff["changed"]:
results[file_path] = await self.generate_doc(file_path)
else:
results[file_path] = previous_docs[file_path]
return results
async def generate_doc(self, file_path):
# 获取模板
template = await self.get_template(file_path)
# 生成文档
content = await self.render_template(template, file_path)
return content
async def get_template(self, file_path):
template_name = self.get_template_name(file_path)
if template_name in self.template_cache:
return self.template_cache[template_name]
template = await self.load_template(template_name)
self.template_cache[template_name] = template
return template
### 3\. 测试生成优化
#### 3.1 优化策略
bash
markdown
## 测试生成优化
### 智能分析
- 分析代码覆盖率
- 识别未测试的路径
- 优先生成关键测试
### 测试去重
- 检测重复测试
- 合并相似测试
- 优化测试套件
### 并行执行
- 并行运行测试
- 使用测试分片
- 优化测试顺序
### 缓存测试结果
- 缓存测试结果
- 使用快照
- 支持增量测试
#### 3.2 实现示例
class OptimizedTestGenerator:
def __init__(self):
self.coverage_analyzer = CoverageAnalyzer()
self.test_deduplicator = TestDeduplicator()
self.result_cache = ResultCache()
async def generate_tests(self, files):
# 分析覆盖率
coverage = await self.coverage_analyzer.analyze(files)
# 识别需要测试的代码
untested_code = coverage.get_untested_code()
# 生成测试
tests = []
for code in untested_code:
test = await self.generate_test(code)
tests.append(test)
# 去重
unique_tests = self.test_deduplicator.deduplicate(tests)
return unique_tests
async def generate_test(self, code):
# 检查缓存
cache_key = self.generate_cache_key(code)
cached_test = await self.result_cache.get(cache_key)
if cached_test:
return cached_test
# 生成测试
test = await self.create_test(code)
# 缓存结果
await self.result_cache.set(cache_key, test)
return test
```